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We reconsider the second approximation for the height of the meniscus on a slender 
vertical cylinder, which has been calculated by James using the method of matched 
asymptotic expansions. Fraenkel has warned that the asymptotic matching principle 
may fail in certain cases, and we confirm that failure here. This meniscus problem 
is used to discuss the kind of failures that may occur if Fraenkel’s restricted form 
of the matching principle is not used. A less restricted matching principle is also 
suggested in this paper. With this matching principle, we show that the last known 
term of order Re3 In Re in the drag on a sphere in low-Reynolds-number flow is correct, 
even though it was found in a way that violates Fraenkel’s warning. 

1. Introduction 
The method of matched asymptotic expansions is a powerful tool in solving 

singular perturbation problems of layer type. Since its formulation by Kaplun (1957), 
it has been used extensively in fluid mechanics as well as other fields. Van Dyke (1964) 
proposed a rule for matching (the asymptotic matching principle) that is particularly 
simple to use and has been applied successfully. However, Fraenkel(l969) warns that 
there are two cases in which the asymptotic matching principle may fail, the 
dangerous one being the case that the gauge functions in the asymptotic expansions 
are mixtures of powers and logarithms of the perturbation quantity E .  In that case, 
if the asymptotic matching principle is applied to an expansion that is truncated by 
separating terms that differ only by a logarithm of the perturbation quantity, an 
erroneous result may be obtained. A model example has been used in Fraenkel’s paper 
to demonstrate this specific point, but so far we believe that only two physical 
problems have suffered from failure to heed the warning. 

First, Crighton & Leppington (1973) used matched expansions to solve the problem 
of the diffraction of long-wavelength plane acoustic waves incident upon a thin 
semi-infinite plate. They found that a result that violated the reciprocity theorem 
would be obtained if they ignored Fraenkel’s warning and applied the asymptotic 
matching principle to series truncated at terms in e2 ln2 E or In E .  A consistent and 
correct result was found when the matching was done on the series truncated at  terms 
in 2 as Fraenkel recommends. 

Secondly, James (1974) used matched expansions to solve the problem of the height 
of a static meniscus outside a slender cylinder. He assumed that the outer expansiont 
for the height of the meniscus has the form 

Z ( R , E )  = Z 1 ( R ) + ~ ’ Z 2 ( R ) +  ..., 
t Here the outer expansion is the asymptotic expansion that is valid in the region far from the 

cylinder. The inner expansion is the asymptotic expansion that is valid in the region close to 
the cylinder. These definitions of outer and inner are exactly the opposite of those in James (1974). 
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and found that the inner expansiont has the form 

z ( r , e )  = lnezl(r)+z2(r)+s21n2ez3(r)+e21nezp(r)+e2z5(~)+ ... , 
where R = er. Unaware of Fraenkel’s warning, James truncated this series at z3.  By 
comparison with the numerical data of Huh & Scriven (1969), he concluded that 
the correction due to the term e2 In2 e z3(r)  made the estimate worse than the first-order 
result. The second-order correction1 is reconsidered in detail in the present work. Two 
interesting results are found. 

First, as happened in the diffraction problem, the matching seems to be totally 
satisfactory when one applies the asymptotic matching principle in the truncated 
series, as James did, but it actually leads to a wrong z3( r ) ,  whereas the correct result 
is obtained when one heeds Fraenkel’s warning. 

Secondly, the matching should let us confirm the form of the asymptotic expansion 
(i.e. the gauge functions in the expansions). In what James did, the asymptotic 
matching principle seemed to confirm the form of the outer expansion as 

Z(R, e) = Z,(R) + e2 Z,(R) + . . . . 
However, the correct form is found to be 

Z(R,e) = Zl(R)+e21neZ,*(R) +e2Z2(R)+ ... , 

which falls out automatically when Fraenkel’s restriction is imposed. 
In their linear diffraction problem, Crighton & Leppington were fortunate in having 

a reciprocity principle to show when the asymptotic matching principle fails. In his 
nonlinear meniscus problem, James had numerical results to suggest that his partial 
second-order correction had the wrong sign. But there are problems where no such 
external check is available, yet it may be impracticable to carry the solution far enough 
to satisfy Fraenkel’s restriction. For example, in the problem of flow past a sphere 
at  low Reynolds number Re, the drag is found (Stokes 1851 ; Oseen 1910; Proudman 
& Pearson 1957; Chester & Breach 1969) to have the expansion 

C,=Re[ l+  67c 8 Re + & Re2 In Re +& (y + g  ln 2-$&) Re2 + &$ Re3 In Re + O(Re3)], 

where y = 0.5772 is Euler’s constant. Proudman & Pearson (1957) calculated only 
the first three terms of the above expansion, finding the term in Re21n Re while 
dropping the more difficult term in Re2. However, it happened that no mistake was 
made, for Chester & Breach (1969) confirmed the coefficient & in extending the series. 
However, they have in turn violated Fraenkel’s warning in retaining the term in 
Re3 In Re while dropping the one in Re3 as being too difficult to calculate. This problem 
will be discussed in 54.2, and we will show that the term Re3 In Re in the drag is correct 
even though the Re3 term is not found and Fraenkel’s warning is not heeded. 

2. Asymptotic matching principle 
Matched asymptotic expansions is a technique for solving an initial- or boundary- 

value problem for a function F(x,  e )  over a range of x in which no single asymptotic 
series for small e can approximate F uniformly. Usually two asymptotic series are 

t See footnote on preceding page. 
1 We count z1 and z2 as the first approximation, and z3, z p  and z5 as the second-order correction. 
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needed to  describe the function F in two different regions in the domain of interest. 
At least one of the two problems describing the series will not be well posed since 
the initial or boundary conditions outside that region are lost. One will have to  use 
‘matching ’ in the overlap domain in order to recover those missing data. That makes 
the matching principle play an essential role. 

Matching not only provides information on the undetermined constants in finding 
the asymptotic expansions, but also suggests (or checks) the appropriate gauge 
functions in the inner (or outer) series. 

Van Dyke (1964) proposed an attractive and simple-to-use matching principle (the 
asymptotic matching principle) which says that the m-term inner expansion of (the 
n-term outer expansion) is equal to the n-term outer expansion of (the m-term inner 
expansion), where m and n can be any integers. I n  other words, if Z(R,s) denotes 
the outer expansion with outer variable R ,  and Z ( T , E )  denotes the inner expansion 
with inner variable r ,  and Z(R,  e) is related to  z ( r ,  E) by Z ( R ,  e) =f(e) Z ( T ,  e), one can 
introduce an operator 0, that truncates the asymptotic series for fixed outer variable 
R as e+O up to  and including the nth term, and an operator I, that  truncates the 
asymptotic series €or fixed inner variable r as e+O up to  and including the mth term ; 
then the asymptotic matching principle can be written a s i  

The asymptotic matching principle is attractive because one can stop at any term 
and perform the matching without going into more complicated higher-order terms. 

However, Fraenkel (1969) warns that, in spite of the beauty of the asymptotic 
matching principle, i t  may fail in the case that the gauge functions of the asymptotic 
expansions are mixtures of powers and logarithms of the perturbation quantity 6. 

He suggests that  the matching should not be done by separating terms that differ 
by less than any power of 6. I n  other words, if @k denotes an operator that  truncates 
the asymptotic series for fixed outer variable R as E + O  up to  and including all terms 
less than order ek+u (r is arbitrarily small) and ll, denotes an operator that  truncates 
the asymptotic series for fixed inner variable r as e+O up to and including all terms 
less than order elfu, Fraenkel proposes the restricted matching principle 

in which 1 and k can be any real numbers. 
We have seen that failure to heed Fraenkel’s warning leads to  error in some 

problems (Crighton & Leppington 1973) and not in others (Proudman & Pearson 
1957). I n  $3  we will reconsider the problem of the meniscus on a needle using 
Fraenkel’s restricted matching principle, and discuss what may happen if one ignores 
his warning. 

3. The meniscus on a needle 
The height of the static meniscus outside a slender cylinder was calculated by James 

(1974) using matched expansions. Being unaware of Fraenkel’s warning, he found an 
erroneous correction term to the first approximation. We reconsider the whole second 

t The notations On, I , ,@,  and II, that are used in this paper are the same as En,  H,, E(k) and 
H(l )  that were used in Fraenkel (1969). 
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FIQURE 1. The static meniscus on a circular cylinder. 

approximation with consideration of Fraenkel’s warning. In  order to make this paper 
self-contained, we will repeat the calculation of the first approximation. In  concluding 
this section, the kinds of failure that may result from ignoring Fraenkel’s warning 
will be discussed. 

3.1. Governing equations and boundary conditions 
The axisymmetric meniscus is sketched in figure 1. The liquid meets the solid surface 
at an angle $, which is an experimentally determined value. 

The Young-Laplace equation in the axisymmetric case can be written as 

with boundary conditions 

-- dy-- tan$ a t  x = r o ,  
dx 

y+O as x + m ,  

Here p is the density of the liquid, IT is the interfacial tension and g is the gravitational 
acceleration. There are two lengthscales in this problem : namely, the radius ro of the 
cylinder and the capillary length I ,  = (a/pg)t.  

We put (3.1) into dimensionless form in the following two ways. First, define 
z = y/ro and r = x /ro ,  and it becomes 

g = {l+[g]2}{€2z[l+(gy]k-;g}, 

with 6 = r,,/lc (capillary number). Secondly, define Z = y / r o  and R = x / l ,  = er, and 
it becomes 

g = (1 + E2 [ gI2} { z [ 1 + €2 ( g)2]1 -g} (3.3) 

We choose the capillary number 6 to be the perturbation parameter. Because it is 
the ratio of two lengthscales, the problem is likely to be a singular perturbation (Van 
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Dyke 1964). This is also suggested by the fact that the last term in (3.2) becomes 
of the same order as the e2 term as r+l/e2.  This suggests that the perturbation 
expansion from (3.2) may be valid only in the region close to the cylinder and the 
resealed differential equation (3.3) is needed for the distant region. 

With these suggestions, r is chosen to be the inner variable. The inner solution z( r )  
is the solution that will be valid in the region close to the cylinder. In  other words, 
the differential equation governing the inner solution is (3.2), but now only the inner 
boundary condition, z’ = -tan$ a t  r = 1, is going to be enforced. R = er is chosen 
to be the outer variable. The outer solution Z ( R )  is governed by (3.3) with the 
boundary condition Z ( R )  + 0 as R + co . 

3.2. First approximation 

3.2.1. Outer expansion. Assume the outer solution has the form 

Z ( R , E )  = Z , ( R ) + o ( l ) .  

From (3.3), Z,(R) is governed by the differential equation 

2; z;+--2, = 0, 
R (3.4) 

with boundary condition 

The general solution of (3.4) is 

Z,(R)+O as R+co. 

2, = C; Ko(R) + C; I o ( R ) ,  

where KO and I. are the two modified Bessel functions of zeroth order. The boundary 
condition shows that (7; = 0, so we have the first approximation 

with Ci still undetermined. 
3.2.2. Inner expansion. From the outer solution, KO behaves like a logarithm for 

small argument, which suggests that the first approximation in the i.nner expansion 
has the form 

2, = Ci Ko(R)  (3.5) 

z ( r , E )  = z,lns+z,+o(l). (3.6) 

From (3.2), z, is governed by 

and it will automatically satisfy the boundary condition zi(r = 1) = 0. The solution 
is 

From (3.2), z, is governed by 

z; = 0, 

21 = c,. (3.7) 

with boundary condition z; = -tan $ at r = 1. The general solution of (3.8) is 

z2 = C, + C; In [ r  + (r2 - Cg2)il. (3.9) 

The boundary condition gives Cg = - c ,  where c = sin $. Hence z(l) can be written a s t  

z ( I )  = C, In E + C, - c In [ r  + (r2 - c2)4]. (3.10) 

t dl) means the first approximation in z (r ) .  
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f(4 = 1 
3.2.3. Matching in theJirst order. From (3.5), one can use (2.2) with m = n = 0 and 

no@, 2 = - C; In E +  (-C; In r - Ci y + Ciln2). 

@,n0z = C,ln E + C, - c(ln r + In z) .  
From (3.10) we find 

All the constants can be determined, and they are 
c; = c, 
c - -C' - - c  
C, = c[2ln2-y]. 

2 -  1 -  7 

z ( r ,  E )  can be written as 

z ( r ,  E )  = - c In E +  c(21n2 - y)- c In [ r  + (r2- c2)il + o(I). (3.1 1) 

The height H of the meniscus is equal to z( r  = 1): 

(3.12) 

3.3. Second approximation 

3.3.1. Outer expansion. The differential equation for the outer expansion (3.3) 
suggests that the correction to the first approximation will be of order e2, that is 

Z(R,E) = Z , ( R ) + E ~ Z , ( R ) + O ( E ~ ) .  

From (3.3), Z,(R) is governed by 

(3.13) 

with the boundary condition Z,(R) --to as R +  00. 

The solution of (3.13) has the form 

Z2(R) = f p ( R )  + Ckfh(R), 

in which a particular solution fJR) that vanishes at infinity can be found by variation 
of parameters. It consists of two complicated integrals. Since we need only the 
asymptotic form of fp(R) for matching, we can expand the integrands for small R 
and integrate term by term. The first few terms are 

1 c3 c3 c3 
4R2 4 4 

f p ( R )  = ln2R+-lnR+&c3+ .... 

The homogeneous solution fh(R) that vanishes a t  infinity is a multiple of 

fh(R) = KO(R), 

so we have the second approximation 

1 c3 c3 c3 
Z ( R , E )  = c K , ( R ) + E ~  [ ( R2 In2 R +-In 4 R + &c3 + . . .) + C; KO( R)] + o ( E ~ ) .  

(3.14) 

3.3.2. Inner expansion. The outer solution suggests correctly that the inner solution 
has the form 

z ( r , E )  = lnsz , ( r )+z2(r )+~21n2Ez, (r )+s21nEz, (r )+s2z , ( r )+  .... 
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From (3.2), z3 is governed by 

z ;+[+]23  1 +3d2  , = 0, 

with the boundary condition z j ( r  = 1) = 0. The solution is 

z3(r) = c3. 

From (3.2), z4 is governed by 

71 

(3.15) 

with the boundary condition Z ~ ( T  = 1) = 0. The general solution of the differential 
equation is 

and imposing the boundary condition gives 

c; = 3 c - & 3 .  

Thus we have 

r 
(r2 - c2)t. 

zp ( r )  = c,+ ($-&3)1n p+ ( r 2 - ~ 2 ) ~ ] - ~ r ( r 2 - C 2 ) t - ( ~ - & 3 )  (3.16) 

From (3.2),  z5 is governed by 

with the boundary condition z;(r = 1) = 0. The solution is 

z5(r)  = &(ln4-y) [ r ( r 2 - c 2 ) ~ ] - d [ r ( r 2 - c 2 ) ~ ] + $ c r 2 +  C, 

+ [$c3(ln 4 - y) + d] In [ r +  (r2 - c2)j] -$cr(r2 - c2)4 In [ r+  (r2 - c2)1] 

+ & ~ 3 ~ ( ~ 2 - ~ 2 ) f i n  [ r+  (r2-~2)b]-$C3in2 [ r+  (r2-c2)?], (3.17) 

in which 
d = &(2 - c2) In [l + (1  -c2)4] - (1  -c2) &(ln 4--y) -fc( 1 -c)k (3.18) 

Equations (3.11), (3.15)-(3.17) give the full second approximation: 

z@)( r )  = - c In 8 + (c(2 1112 - y)- c In [r+ (r2- c2)b]} 

+ C3e2 ln2 s+ s2 In e{C4 + (& -#c3) In [r  + (r2- c2)+] 
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with rn = n = 2 and f ( e )  = 1. We have from (3.14) 
3.3.3. Matching in the second order. We apply Fraenkel’s matching principle (2.2) 

1 c3 
4 r2 

lI,@,Z = - c  In E + [ - c In r - cy + c In 21 +--+ E21n2E( -k3) 

+ e2 In E{ - 4c3 In r -+cr + (tc3 - Ci)} 

+ e2{ -+cr2 In r + (k3- Ci) In r-fc3 ln2 r +t(ln 2 + 1 - y) cr2 

+&c3 + C;(ln z- y)}, 

and from (3.19), 
1 c3 

4 r2 
@,lI,z = - c l n ~ + [ - c l n r - c y + c l n 2 ] + - - + ~ ~ l n ~ ~ C ~  

+ e2 In E{(+c- $c3) In r -&r2 + [C, +In 2(& -fc3) +333-&} 

+ E ~ {  -&r2 In r + [4c3(ln 4 - y) + d +$c3 -k3 In 2]lnr -+c3 ln2r 

+ [$(In 4-y )  ++c-&ln 21 + [ -ic3(1n 4-y) - d  + C, +&c3] 

+ ln2[+c3(ln4 - y)  + d +&3] -k31n22]}. 

The matching for e21ne is impossible because equating terms in ~ ~ l n ~ l n r  gives a 
contradiction. This can be remedied by inserting a switchback? term in s2 In E in the 
outer expansion. That means 

Z(R,  E )  = Z,(R) + E~ In E Z:(R) + e2Z2(R) + . . . . 
From (3.3), Z,* is governed by 

Z:/ Z,*”+--z* = 0 
R 2 ’  

with boundary condition Z,*(R)+O as R +  00, and the solution is Z,* = CLK,(R), so 
(3.14) should be 

Z(R, E )  = cK,(R) + c2 In E[C; Ko(R)]  
c3 + e2 [(=-k3 ln2 R +k3 In R +&c3 + . . .) + Ci Ko(R)]  + o ( E ~ ) .  

The correct form for matching is 

1 c3 
4 r2 

lI,@,Z = - c In E + [ - c In r - cy + c In 21 + --+ e2 In2€[ -+c3-- Cj] 

+ e2 In E{ - (+3 + Cj) In r-&r2 + [k3 - Ci + (In 2 - y)  Cj]} 

+ e2{c( - i r 2  In r )  + (ic3 - Ci) In r -b3 In2 r ++(h 2 + 1 - y) cr2 

+&c3 + C;l(ln 2 - y)}. 

t The switchback phenomenon: Guessing the appropriate form for the asymptotic expansion is 
often required in a perturbation solution. Sometimes an oversimplified form is assumed. Kaplun 
introduced the term ‘switchback’ to describe the situation when one tries to find a term of certain 
order, and is forced t o  reconsider a lower-order term. A detailed discussion of the switchback effect 
can be found in Lagerstrom & Casten (1972). The switchback term in our problem will be missed 
if Fraenkel’s warning is ignored. 
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Now the matching can be carried out, giving 

(3.20) 

c;; = & ~ 3 ~ - d - 1 3  gc , c; = -4c+&3, c, = +C(l-cZ) 

C 4 - 2  - -Ic - 1c3 4 + d - +y(c3 - c) + In 2(c3 - c)  , 

C5 = +c3(+ - y2) + d (  1 -In 4 + y)  -fc3 ln2 2 + (bc3  -k3) In 2. 

The height of the meniscus up to O ( 2 )  will be 

H ( @  = d 2 ) ( r  = 1) =zl(r  = l)lne+z,(r = I)+z3(r = l)s21n2e 

+z,(r = l ) ~ ~ I n s + z , ( r  = l)e2,  (3.21) 
where 

zl(r = 1) = -sin$, 

zz(r  = 1) = sin$[ln4-1n(l+cosr$)-y], 

z3(r = 1) = +sin$(1-sin2$), 

z4(r = 1) = sin${cos2$[y+++ln+(l +cos$)]+[+-cos$]}, 

d 
Z ~ ( T  = 1) =a sin $ COS @ (In 4 - y) --+ sin $ + d( 1 -In 4 - y)  

cos $4 

++sin3 $ (+-y2 - ln2 2 + y In 4 --In 2) 

+ [In( 1 + cos$)] [$sin3$ ) + d -+sin$cos$] 

- [ln2 (1 + cos$)] +sin3$, 

and d is the expression in (3.18). 

3.4. Comparison with numerical results 
Our reconsideration of the second approximation was triggered by James' conclusion 
that, in comparison with numerical data, his correction due to the term e2 ln2 E Z ~ ( T )  

makes the estimate worse than the first-order result. We compare our corrected result 
with the numerical data of Huh & Scriven (1969). The comparisons in the cases 
# = 15O, 30°, 60' and 75' are plotted in figure 2. 

We see that each of the three terms in the full second approximation successively 
improves the estimate. 

3.5. A lesson in asymptotic matching 
We use this simple problem to discuss the kinds of failure that may occur if Fraenkel's 
warning is ignored. As mentioned in 0 1, matching should not only replace the missing 
conditions in the inner and outer problems, but also let us check the correctness of 
the gauge functions that we have assumed. I n  other words, it  should tell us whether 
or not any switchback terms exist. If Fraenkel's warning is ignored, the asymptotic 
matching principle may fail us in both ways. 

First, it  is reasonable to guess, as James (1974) did, that  the outer expansion has 
the form 

Z(R,  E )  = Zl(R)  +E2Z2(R) + . . . . 
Then if we apply the asymptotic matching principle (2.1) with n = 2, m = 3 and 



74 L. L. Lo 
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FIGURE 2 .  Percentage error on the maximum height of the meniscus: ---, first approximation; 
--- , second approximation including terms up to e2 ln2 E ;  -.-, up to e2 In E ;  -, up to E' (full 
second approximation).; . . . . . . , James' erroneous second approximation including terms up to e2 ln2 E .  

f ( e )  = 1, keeping the e2 term in the outer expansion and the e2 ln2 e term in the inner 
expansion : 

1302Z(R)  = O2I32(?.). 

c - -&3 

We obtain an incorrect integration constant 

3 -  

and also appear to confirm the erroneous form of the outer expansion. This shows 
that the asymptotic matching principle may fail to detect an incorrect form of the 
series, and that will lead to an erroneous integration constant. 

Secondly, if we use the correct form of the outer series 

Z(R, e) = Z,(R) + e2 In eZ;(R) + e2Z2(R) + . . . , 
but apply the asymptotic matching principle (2.1) with n = 2, rn = 4 andf(e) = 1, 
keeping the e21ns term in the outer expansion and the e21ne term in the inner 
expansion, 

we obtain the erroneous results 

I4 0 2 Z ( R )  = O2 I4 z ( r ) ,  

c; = - [*c - 

e3 = ic--4c3, 

instead of the correct results in (3.20). This shows that, even though the forms of the 
inner and outer series are both correct, the asymptotic matching principle still can 
fail us. This is what might happen in the diffraction problem discussed by Crighton 
& Leppington (1973). 
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4. Discussion 
The diffraction problem of Crighton & Leppington (1973) and our present 

correction of the meniscus problem suggest that  Fraenkel’s warning must be heeded 
whenever the form of a matched expansion is a mixture of powers and logarithms. 
However, we show in this section how we can partially relax Fraenkel’s restriction. 
Then we conclude by using that result to show that the last known term, of order 
Re3 In Re, in the series for drag of a sphere a t  low Reynolds number is correct, although 
it was calculated disregarding Fraenkel’s warning. 

4.1. A modi$ed asymptotic matching principle 
Fraenkel’s matching principle generates a complete set of algebraic equations for the 
constants that  must be determined. Those result from equating like functions of s 
and like functions of the independent variable(s) in the problem. However, as far as 
an individual constant is concerned, only a few equations among the whole set will 
be needed for finding it.  If Fraenkel’s warning is violated, the asymptotic matching 
principle may generate equations that don’t belong to the complete set. In other 
words, the danger in using asymptotic matching principle (2.1) is that  i t  may generate 
wrong equations. 

The reason is that matching ‘mixes ’ terms with different gauge functions. Consider, 
for example, the left side of Fraenkel’s principle (2.2). The operator II, first truncates 
the asymptotic series for z(r )  at the term with gauge function sl. Next, in order to 
apply the operator @ k  we must rewrite in the outer variable R = sr and expand for 
small s. I n  this process a function r i I d r  is replaced by (R/e)j(lnR-lns)j and 
expanded, and is accordingly mixed with terms that originally had different gauge 
functions. Then the operator 01, truncates the new series a t  the term with gauge 
function sk. The right-hand side of (2.2) is mixed in a similar way. 

Now suppose we choose to  do the final equating with the independent variable r 
(the inner variable). For that purpose we must rewrite the left-hand side once again 
in terms of r = R/E, yielding what we may denote by a subscript as [@k II, z(r, s)],. 
I n  this process the mixing is undone; each term regains its original gauge function 
of the inner expansion. Thus the left-hand side of (2.2) emerges unmixed. It suggests 
that  one can replace the operator II, with In and pick out the contribution from the 
inner expansion to the first n equations by equating like function E in (2.2). Even 
though the unmixing of terms with different gauge functions doesn’t occur in the 
right-hand side, the choice of using inner variable r on the final equating also allows 
us to pick out the contribution from the outer expansion to  the first n equations by 
replacing II1 with I,. So, one can successfully get the first n equations from Fraenkel’s 
matching principle by 

[ @ k I , z ( r , s ) ] r  = 
f(4 r 

Similarly, if the final equating is done in the outer variable R,  we may use 

( 4 . 1 ~ )  

(4.1 b )  

The matching (4.1 a,  b)  is a mixture of Fraenkel’s restricted matching principle (2.2) 
and the asymptotic matching principle (2.1). The advantage in using (4.1) is that  one 
can obtain a correct subset ofequations by stopping at any term in the inner (or outer) 
expansion so long as all terms of order sk (or d) are kept in the outer (or inner) 
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expansion, and the final equating is done with the inner (or outer) variable. However, 
that  subset may not suffice to determine the required constants, in which case we 
can try increasing n by one. 

For example, if the matching principle ( 4 . l a )  is used in the meniscus problem, and 
if, like James, we are interested in the height of the meniscus only up to e2 In2 E ,  we 
can use 

[I,@2Z(R, = [@2I,Z(rF)Ir> 

where 0, means truncating the outer series a t  the term in c2, and I, means truncating 
the inner series at the term in c2 ln2 E .  However, this yields only the relation 

-$c3-C; = C,, c = sin$. 

We need one more equation to  solve for both constants C; and C,, so we use instead 

[1402Z(R, c)]f = [@,I4 z( r ,  

(I, means truncating the inner series at the term in ~ :" lns) .  This gives one more 
equation 

Q' - -lC 1 3  
3 -  2 +4c 

and leads to the correct result 
c3 = -$c(c"l). 

From this, we see that,  as far as the c2 ln2 E term is concerned, we need not find 
the c2 term in the inner expansion. 

However, the matching (4.1) also has its disadvantage. As we mentioned before, 
matching should also let us check whether the form of the expansion that we assumed 
is correct or not. Since (4.1) represents only the first n equations of the complete set 
in Fraenkel's matching (2.2), i t  may not provide enough information to let us check 
the gauge functions. I n  other words, when (4.1) is used, one has to be sure of the form 
of the expansions in both outer and inner series or one has to include all the possible 
switchback terms. 

4.2.  Drag of a sphere 

In  this subsection we will discuss the last known term in the drag on a sphere in 
low-Reynolds-number flow that was calculated by Chester & Breach (1969). (That 
is the Re31n Re term in ( l . l ) . )  The inner stream function, which is valid in the region 
close to the sphere, was found to have the form 

@(r,p ,Re)  = ko(r,pu)+Rek,(r,p)+Re21nRe@21(r,pu) 

+ R e 2 k z ( r , p ) +  Re3 lnRe@, , ( r ,p )+Re3@, ( r ,p )+  ... , 
in which Re is the Reynolds number of the flow, r is the distance from the centre of 
the sphere, and p is the cosine of the angle measured from the direction of the 
oncoming flow. The outer stream function, which is valid in the region far from'the 
sphere, was found to  have the form 

W p , p , R e )  = y0(p,p)+Re ~~Y,(p,pu)+Re2Yz(p,pu)+Re21nRe Y2,(p,p)+ ... , 
in which p is the outer variable, related to the inner variable r by p = Rer, and !P 
relates to @ by Y = Re2@. Chester & Breach (1969) calculated the Re3 In Re term in 
the drag by matching the inner series truncated a t  the term in Re3 with the outer 
series truncated a t  the term in Re31nRe. According to Fraenkel's warning, the 
coefficient of the Re3 In Re term in the drag may be incorrect, and nothing more 
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can be said unless the matching includes the Re3 term in the outer expansion, which 
is believed to  be extremely difficult to calculate. However, using the notation 
introduced in this paper, we can write the matching rule that Chester & Breach 
actually used as 

(in which the operator O4 means truncating the series Y/Re2 a t  the Re In Re term). 
As we showed earlier, if the outer and inner stream functions have the correct gauge 
functions, this matching actually just picks out the first four equations in the whole 
set which is generated by Fraenkel’s matching principle. 

We now consider the possibility of having switchback terms in the outer and inner 
expansions. Let us assume that the inner expansion has a switchback term of order 
Re3 In2 Re ; then the matching tells us that a switchback term of order Re3 ln2 Re will 
be needed in the outer expansion. The inner and outer stream functions will have 
the following forms : 

$ ( r j  p, Re) = 31.0(r, p )  +Re $l(r, p )  + Re2 1nRe $ 2 ~ ( r ,  pu.) +Re2 $2(r, p )  

Wp, p, Re) = y 0 ( p ,  p )  +Re yl(p, p )  + Re2 ul,(p, p )  + Re3 In2 Re P:z(p, p )  

+Re31n2 Re+-,*,(r,p)+Re31nRe$3z(~,p)+Re3+3(r,,u)+ ... , 

+ Re3 In Re Y3,(p, p )  + . . . . 
The solutions for all the terms except the two switchback terms are in Chester & 
Breach (1969). The $5 will be governed by the same differential equation and has 
the same boundary condition as $ 2 1 ,  so the solution is 

Similarly, the Y:z will be governed by the same differential equation and has the same 
boundary condition as Y31, so the solution for Y5 is 

Y3, = N* (1 + p )  { 1 - exp [ - &( 1 -p ) ] }  

= - ( N * p - l N *  4 P 2 1 Q ~ ( P ) - W * P ~ Q ~ ( P )  + 7 

where 

and P,(p) is the Legendre polynomial of degree n. One can perform the matching using 

(in which the 4th term in the outer expansion means the Reln2 Re term). Matching 
in the term Re In2 Re Q1(p)  gives 

;tN* = 2C 

and 
N* = 0, 

which gives 
c = 0. 

This means that the two switchback terms do not exist, and similarly no higher-order 
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switchback terms of order Re3 will exist.It shows that Chester & Breach (1969) indeed 
use the correct forms for the inner and outer expansions. Then our previous argument 
confirms that the coefficient Q for the term Re31nRe in the drag is correct. 
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